Home > matGeom > geom3d > distancePointTriangle3d.m

distancePointTriangle3d

PURPOSE ^

DISTANCEPOINTTRIANGLE3D Minimum distance between a 3D point and a 3D triangle.

SYNOPSIS ^

function [dist, proj] = distancePointTriangle3d(point, triangle)

DESCRIPTION ^

DISTANCEPOINTTRIANGLE3D Minimum distance between a 3D point and a 3D triangle.

   DIST = distancePointTriangle3d(PT, TRI);
   Computes the minimum distance between the point PT and the triangle
   TRI. The Point PT is given as a row vector of three coordinates. The
   triangle TRI is given as a 3-by-3 array containing the coordinates of
   each vertex in a row of the array:
   TRI = [...
      X1 Y1 Z1;...
      X2 Y2 Z2;...
      X3 Y3 Z3];

   [DIST, PROJ] = distancePointTriangle3d(PT, TRI);
   Also returns the coordinates of the projeced point.

   Example
      tri = [1 0 0; 0 1 0;0 0 1];
      pt = [0 0 0];
      dist = distancePointTriangle3d(pt, tri)
      dist =
           0.5774

   See also
   meshes3d, distancePointMesh, distancePointEdge3d, distancePointPlane

   Reference
   * David Eberly (1999), "Distance Between Point and Triangle in 3D"
   https://www.geometrictools.com/Documentation/DistancePoint3Triangle3.pdf
   * see <a href="matlab:
     web('https://fr.mathworks.com/matlabcentral/fileexchange/22857-distance-between-a-point-and-a-triangle-in-3d')
   ">Distance between a point and a triangle in 3d</a>, by Gwendolyn Fischer.
   (same algorithm, but different order of input argument)

   * https://fr.mathworks.com/matlabcentral/fileexchange/22857-distance-between-a-point-and-a-triangle-in-3d

CROSS-REFERENCE INFORMATION ^

This function calls: This function is called by:

SOURCE CODE ^

0001 function [dist, proj] = distancePointTriangle3d(point, triangle)
0002 %DISTANCEPOINTTRIANGLE3D Minimum distance between a 3D point and a 3D triangle.
0003 %
0004 %   DIST = distancePointTriangle3d(PT, TRI);
0005 %   Computes the minimum distance between the point PT and the triangle
0006 %   TRI. The Point PT is given as a row vector of three coordinates. The
0007 %   triangle TRI is given as a 3-by-3 array containing the coordinates of
0008 %   each vertex in a row of the array:
0009 %   TRI = [...
0010 %      X1 Y1 Z1;...
0011 %      X2 Y2 Z2;...
0012 %      X3 Y3 Z3];
0013 %
0014 %   [DIST, PROJ] = distancePointTriangle3d(PT, TRI);
0015 %   Also returns the coordinates of the projeced point.
0016 %
0017 %   Example
0018 %      tri = [1 0 0; 0 1 0;0 0 1];
0019 %      pt = [0 0 0];
0020 %      dist = distancePointTriangle3d(pt, tri)
0021 %      dist =
0022 %           0.5774
0023 %
0024 %   See also
0025 %   meshes3d, distancePointMesh, distancePointEdge3d, distancePointPlane
0026 %
0027 %   Reference
0028 %   * David Eberly (1999), "Distance Between Point and Triangle in 3D"
0029 %   https://www.geometrictools.com/Documentation/DistancePoint3Triangle3.pdf
0030 %   * see <a href="matlab:
0031 %     web('https://fr.mathworks.com/matlabcentral/fileexchange/22857-distance-between-a-point-and-a-triangle-in-3d')
0032 %   ">Distance between a point and a triangle in 3d</a>, by Gwendolyn Fischer.
0033 %   (same algorithm, but different order of input argument)
0034 %
0035 %   * https://fr.mathworks.com/matlabcentral/fileexchange/22857-distance-between-a-point-and-a-triangle-in-3d
0036 
0037 % ------
0038 % Author: David Legland
0039 % E-mail: david.legland@inrae.fr
0040 % Created: 2018-03-08, using Matlab 9.3.0.713579 (R2017b)
0041 % Copyright 2018-2024 INRA - Cepia Software Platform
0042 
0043 % triangle origin and vectors
0044 p1 = triangle(1,:);
0045 v12 = triangle(2,:) - p1;
0046 v13 = triangle(3,:) - p1;
0047 
0048 % identify coefficients of second order equation
0049 a = dot(v12, v12, 2);
0050 b = dot(v12, v13, 2);
0051 c = dot(v13, v13, 2);
0052 diffP = p1 - point;
0053 d = dot(v12, diffP, 2);
0054 e = dot(v13, diffP, 2);
0055 % f = dot(diffP, diffP, 2);
0056 
0057 % compute position of projected point in the plane of the triangle
0058 det = a * c - b * b ;
0059 s = b * e - c * d ;
0060 t = b * d - a * e ;
0061 
0062 % switch depending on the region where the projection occur
0063 if s + t < det
0064     if s < 0
0065         if t < 0
0066             % region 4
0067             % The minimum distance must occur
0068             % * on the line t = 0
0069             % * on the line s = 0 with t >= 0
0070             % * at the intersection of the two lines
0071             
0072             if d < 0
0073                 % minimum on edge t = 0 with s > 0.
0074                 t = 0;
0075                 if a <= -d
0076                     s = 1;
0077                 else
0078                     s = -d / a;
0079                 end
0080             else
0081                 % minimum on edge s = 0
0082                 s = 0;
0083                 if e >= 0
0084                     t = 0;
0085                 elseif c <= -e
0086                     t = 1;
0087                 else
0088                     t = -e / c;
0089                 end
0090             end
0091         else
0092             % region 3
0093             % The minimum distance must occur on the line s = 0
0094             s = 0;
0095             if e >= 0
0096                 t = 0;
0097             else
0098                 if c <= -e
0099                     t = 1;
0100                 else
0101                     t = -e / c;
0102                 end
0103             end
0104         end
0105         
0106     else
0107         if t < 0
0108             % region 5
0109             % The minimum distance must occur on the line t = 0
0110             t = 0;
0111             if d >= 0
0112                 s = 0;
0113             else
0114                 if a <= -d
0115                     s = 1;
0116                 else
0117                     s = -d / a;
0118                 end
0119             end
0120         else
0121             % region 0
0122             % the minimum distance occurs inside the triangle
0123             s = s / det;
0124             t = t / det;
0125         end
0126     end
0127 else
0128     if s < 0
0129         % region 2
0130         % The minimum distance must occur:
0131         % * on the line s + t = 1
0132         % * on the line s = 0 with t <= 1
0133         % * or at the intersection of the two (s=0; t=1)
0134         
0135         tmp0 = b + d;
0136         tmp1 = c + e;
0137         
0138         if tmp1 > tmp0
0139             % minimum on edge s+t = 1, with s > 1
0140             numer = tmp1 - tmp0;
0141             denom = a - 2 * b + c;
0142             if numer >= denom
0143                 s = 1;
0144             else
0145                 s = numer / denom;
0146             end
0147             t = 1 - s;
0148         else
0149             % minimum on edge s = 0, with t <= 1
0150             s = 0;
0151             if tmp1 <= 0
0152                 t = 1;
0153             elseif e >= 0
0154                 t = 0;
0155             else
0156                 t = -e / c;
0157             end
0158         end
0159         
0160     elseif t < 0
0161         % region 6
0162         % The minimum distance must occur
0163         % * on the line s + t = 1
0164         % * on the line t = 0, with s <= 1
0165         % * at the intersection of the two lines
0166         tmp0 = b + e;
0167         tmp1 = a + d;
0168         
0169         if tmp1 > tmp0 
0170             % minimum on edge s+t=1, with t > 0
0171             numer = tmp1 - tmp0;
0172             denom = a - 2 * b + c;
0173             if numer > denom
0174                 t = 1;
0175             else
0176                 t = numer / denom;
0177             end
0178             s = 1 - t;
0179             
0180         else
0181             % minimum on edge t = 0 with s <= 1
0182             t = 0;
0183             if tmp1 <= 0
0184                 s = 1;
0185             elseif d >= 0
0186                 s = 0;
0187             else
0188                 s = -d / a;
0189             end
0190         end
0191         
0192     else
0193         % region 1
0194         % The minimum distance must occur on the line s + t = 1
0195         numer = (c + e) - (b + d);
0196         if numer <= 0
0197             s = 0;
0198         else
0199             denom = a - 2 * b + c;
0200             if numer >= denom
0201                 s = 1;
0202             else
0203                 s = numer / denom;
0204             end
0205         end
0206         
0207         t = 1 - s;
0208     end
0209 end
0210 
0211 % compute coordinates of closest point on plane
0212 proj = p1 + s * v12 + t * v13;
0213 
0214 % distance between point and closest point on plane
0215 dist = sqrt(sum((point - proj).^2));

Generated on Thu 21-Nov-2024 11:30:22 by m2html © 2003-2022